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 i  g  h  l  i  g  h  t  s

Intraperitoneal  administration  of  FGF2  decreased  the freezing  time  and  anxiety  behavior  in  rats.
Single  prolonged  stress  (SPS)  induced  astrocytic  inhibition  in  the  hippocampus.
Astrocytic  inhibition  may  be reversed  by  FGF2  application.
SPS  and  FGF2  application  had  no  effect  on  neurons.
FGF2  blocks  the  PTSD  symptoms  via  the  astrocyte-based  mechanism  but not  neurons.
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a  b  s  t  r  a  c  t

Although  posttraumatic  stress  disorder  (PTSD)  is  characterized  by traumatic  memories  or  experiences
and  increased  arousal,  which  can  be partly  alleviated  by  antidepressants,  the  underlying  cellular  mech-
anisms  are  not  fully  understood.  As  emerging  studies  have  focused  on  the critical  role  of  astrocytes
in  pathological  mood  disorders,  we hypothesized  that  several  ‘astrocyte-related’  mechanisms  underly-
ing  PTSD  exist.  In the  present  study,  using  the  single  prolonged  stress  (SPS)  model,  we  investigated  the
effects  of intraperitoneal  FGF2  on SPS-induced  PTSD  behavior  response  as  well  as the astrocytic  activation
TSD
strocyte
GF2
ear response
pen field
levated plus maze
ouble immunofluorescence western blot

after  FGF2  administration  in SPS  rats. Behavioral  data  showed  that  intraperitoneal  FGF2  inhibited  SPS-
induced  hyperarousal  and  anxiety  behavior;  however,  immunohistochemistry  showed  that  SPS-induced
astrocytic  inhibition  was activated  by  intraperitoneal  FGF2.  Quantitative  western  blotting  showed  that
intraperitoneal  FGF2  up-regulated  glial  fibrillary  acidic  protein  (GFAP),  but not  NeuN,  expression  in  the
hippocampus.  We  suggest  that  intraperitoneal  FGF2  could  block  the  SPS-induced  fear  response  and
anxiety  behavior  in PTSD  via  astrocyte-based  but  not  neuron-based  mechanisms.

© 2013 Published by Elsevier B.V.
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. Introduction

Posttraumatic stress disorder (PTSD) is characterized by trau-
atic memories or experiences and increased arousal, which can be

artly alleviated by antidepressants [1,2]. However, the underlying
Please cite this article in press as: Xia L, et al. FGF2 blocks PTSD symp
http://dx.doi.org/10.1016/j.bbr.2013.08.048

ellular mechanisms are not fully understood. As emerging studies
ave focused on the critical role of astrocytes in pathological mood
isorders [3,4], we hypothesized the existence of ‘astrocyte-related’

Abbreviations: SPS, single prolonged stress; PTSD, posttraumatic stress disor-
ers; EPM, elevated plus maze; OF, open field; GFAP, glial fibrillary acidic protein;
GF2, fibroblast growth factor 2; PBS, phosphate buffered saline.
∗ Corresponding author. Tel.: +86 02984773112; fax: +86 02984774803.
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mechanisms underlying PTSD. Astrocytes are the largest popula-
tion of cells in the hippocampus, an important structure associated
with stress; therefore, we investigated the role of astrocytes in
PTSD.

Fibroblast growth factor 2 (FGF2), a mitogen involved in the
molecular cascade of memory on extinction and relapse in rats
[5–7], is synthesized in astrocytes, modulates the adult rat hip-
pocampal neurogenesis and activates newborn neurons in acute
stress [8], but its role in chronic stress such as PTSD remains
unknown. In addition to being generally accepted as an angiogene-
sis factor [9–12], FGF2 has shown antidepressant effects in animal
studies [13–16]. Several studies [17–20] demonstrated that FGF2
toms via an astrocyte-based mechanism. Behav Brain Res (2013),

administration decreased anxiety or depression-like behavior, and
the FGF system itself was  altered after FGF2 administration. How-
ever, Graham and Richardson (2009) reported that acute systemic
administration of FGF2 caused enhanced long-term extinction of
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he fear memory and reduces reinstatement [21]; the fear memory
s the main factor causing PTSD [22,23]. In addition, during manip-
lation of FGF2 and FGFR1 in animal models, FGF signaling in the
ippocampus affected anxiety behavior and was correlated with
he response to antidepressant treatment [24–26]. A previous study
emonstrated that antidepressants such as clomipramine could
everse the stress-induced reduction of hippocampal GFAP expres-
ion in the chronic unpredictable stress model of depression [27].
hese explanations focus on the effects of FGF2 on mood disorders
hile neglecting the possible contribution of astrocytes. Because

he function of glial cells in the central nervous system has been
e-evaluated and these cells are now considered to be involved in
nformation processing [28], their role in the mechanism of mood
isorders such as PTSD should be examined.

In the present study, we first confirmed the possible anxi-
lytic effect of FGF2 on the single prolonged stress (SPS) model via
he intraperitoneal (IP) route using the fear response and anxiety
ehavior parameters. Parallel astrocytic activation following FGF2
reatments was evaluated by investigating astrocyte-specific GFAP
y semi-quantitative immunofluorescent labeling and quantitative
estern blotting.

. Methods

.1. Animal preparation

Male Sprague-Dawley rats (180–200 g) were housed in plas-
ic cages, and maintained on a 12:12 h light:dark cycle under an
mbient temperature of 22–25 ◦C with food and water available ad
ibitum. All experimental procedures received prior approval from
he Animal Use and Care Committee for Research and Education of
he Fourth Military Medical University (Xi’an, China), and the eth-
cal guidelines for experimental stress in conscious animals were
ollowed. All efforts were made to minimize animal suffering and
o reduce the number of animals used.

.2. Drug administration

FGF2 (Fibroblast Growth Factor-2; R&D Systems) was reconsti-
uted at a concentration of 10 mg/mL  in phosphate-buffered saline
PBS) containing 0.1% bovine serum albumin (BSA). FGF2 was dis-
olved and diluted with PBS to 1% (5 g/100 mL)  for IP administration
20 mg/kg, approximately 0.5 mL). Normal saline was used as the
egative control. The dosages of FGF2 used in the present study
ere based on previous research [29] and our pilot experiment.

.3. SPS

The SPS model created in this study consisted of the application
f three stressors (restraint stress, forced swim, and ether expo-
ure) followed by a quiescent period of seven days [30,31]. The
ats were restrained for 2 h, followed immediately by 20 min  of
orced swimming in 20–24 ◦C water in a plastic tub (24-cm diame-
er, 50-cm height), filled two-thirds to the top. Following a 15-min
ecuperation, rats were exposed to ether (using a desiccator) until
eneral anesthesia, defined as loss of toe and tail pinch responses,
as induced (<5 min). Immediately after the induction of general

nesthesia, rats were removed from the desiccator, placed in their
ome cages, and left undisturbed for seven days. For the control
rocedure, rats remained in their home cages without food and
ater for the duration of SPS.
Please cite this article in press as: Xia L, et al. FGF2 blocks PTSD symp
http://dx.doi.org/10.1016/j.bbr.2013.08.048

.4. Open field (OF) test

Rats were placed at the center of a cubic chamber
100 × 50 × 100 cm). The total distance that the animal
 PRESS
search xxx (2013) xxx– xxx

traveled in 15 min  was  measured by an automated analyzing
system (Shanghai Mobile Datum Information Technology Co., Ltd).
This distance was  used as a parameter for the rats’ locomotion
and the percentage of time spent in the center area (center
time percentage) was used to evaluate anxiety levels [32]. All
animals were habituated to the testing room for 20 min before
the start of the session. The test room was  dimly illuminated
with indirect white lighting, as rats are nocturnal and their
natural exploratory behavior is hindered in well-illuminated
conditions.

2.5. Elevated plus maze (EPM) test

Animals were placed in an elevated plus maze (EPM) made
of black Plexiglas consisting of two  opposite-facing open arms
(50 × 10 cm), two  opposite-facing closed arms (50 × 10 × 40 cm),
and a central area (10 × 10 cm). The walls of the closed arm were
of clear Plexiglas. The EPM was mounted on a base and elevated
50 cm above the floor. Rats were placed in the central area facing
the open arms. Then, a 5-min test session was  started. The num-
bers of rats entering/climbing onto the open arms and closed arms
were recorded by a video recorder, and later scored by two inves-
tigators blinded to the experiment. In addition, the amount of time
the rats spent on each arm was  recorded. An entry was  defined as
placing four paws onto the open arm [33]. Four measures of behav-
ior in the EPM were scored: (1) time spent on the open arms; (2)
time spent on the closed arms; (3) the number of entries onto the
open arms; (4) the number of entries onto the closed arms. “OA
entries %” = numbers of entries onto the open arms/(numbers of
entries onto the open arms + closed arms) and “OA time %” = time
spent on the open arms/(time spent on the open arms + closed
arms).

2.6. Contextual fear conditioning and extinction

Fear conditioning and extinction as well as retention of the
extinction memory were performed according to our previous
report [34]. The test chamber consisted of a modified shuttle box
(24.2 W × 24.2 D × 30 H cm,  Shanghai Mobile Datum Information
Technology Co., Ltd, Shanghai, China) constructed of four ver-
tical Plexiglas sides, with a floor consisting of horizontal metal
bars (0.5-cm diameter, spaced 1.5 cm apart) connected to an
electric shock generator. The test chamber was placed inside a
sound-attenuating chamber (Shanghai Mobile Datum Information
Technology Co., Ltd.) with a plastic floor. The experiments were per-
formed under dim light (4 lx) at approximately the same time each
day.

On day 7, animals were placed in the test chamber and left
to explore the environment for 2 min  followed by 10 tone-shock
paired trainings. The conditioned stimulus (CS) was a tone (ampli-
tude: 80 dB; frequency: 4 kHz, sine wave; duration: 30 s; inter-trial
interval (ITI): 1–4 min) and the unconditioned stimulus (US) was
an electric shock (0.6 mA,  5 s, co-terminated with tone) delivered
through the chamber floor bars.

Extinction trials were administered in box B to animals 24 h
after the final conditioning trial. Retention tests were conducted
in box B on days 7, 10 and 14. The extinction trials were 30 tones
(ITI: 1–2 min; all other parameters were as for fear conditioning)
in the absence of electric shock. For the retention test, five tones
(ITI: 1–2 min) were administered. The chamber walls, floor, floor
bars and tray underneath the floor were cleaned with 70% ethanol
between sessions.
toms via an astrocyte-based mechanism. Behav Brain Res (2013),

Freezing during the presentation of CS alone was defined as
complete immobility of the animal in a stereotypical crouch-
ing position, except for movements necessary for breathing. The
position and shape of rats were dynamically returned based on
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omputer-aided contrast-detecting image processing and calcula-
ion. Based on the threshold set for immobility, the freezing times
ere calculated. All image processing and calculations were com-
iled using the Dr. Rat Rodents’ Behavior System (Shanghai Mobile
atum Information Technology Co., Ltd). Freezing behavior during
ve randomly selected CS was analyzed from a video recorded by a
amera positioned above the operant chamber for a 10-min observ-
ng period (5–9 CS) after the last CS–US pairing in fear conditioning
r during retention tests, by presenting only CS with a random ITI
f 1–2 min. After the 10-min video recording, rats were returned to
heir home cages. Only one rat at a time was present in the experi-

ental room; the other rats remained in their home cages. Each rat
as carried to the behavioral room in a new cage that was  identi-

al to the home cage. For the contextual conditioning experiments,
ats were placed in the conditioning chamber 180 s before the onset
f the US (continuous foot shock at 0.8 mA,  for 4 s). After the test,
ats were placed back in their home cages. Twenty-four hours later,
ats were again placed in the same conditioning chamber and con-
extual freezing was assessed. Conditioning was assessed based on

easurements of freezing, defined as the total absence of body and
ead movement except for that associated with breathing. Freezing
ehavior of the rat was recorded using a video recorder, and later
cored by a well-trained investigator blinded to the experiment.
ear level was quantified as the amount of time (in seconds) spent
reezing.

Extinction training was defined as the repetitive exposure to the
ontextual cue in the absence of foot shock. Twenty-four hours after
ear conditioning, rats were placed for 10 min  without foot shock in
he chamber in which the foot shock was delivered. All image pro-
essing and calculations were performed using the Dr. Rat Rodents’
ehavior System (Shanghai Mobile Datum Information Technology
o., Ltd).

.7. Immunohistochemistry

After deep anesthesia induced with urethane (2 g/kg, ip), rats
ere perfused through the ascending aorta with 100 mL  of 0.9%

aline followed by 500 mL  of 0.1 M phosphate buffer (pH 7.3) con-
aining 4% paraformaldehyde and 2% picric acid. After perfusion,
he brain was removed and post-fixed in the same fixative for 2 h
nd then cryoprotected for 24 h at 4 ◦C in 0.1 M phosphate buffer
ontaining 30% sucrose. Transverse frozen hippocampus sections
30 �m thick) were cut using a cryostat (Leica CM1800, Heidel-
erg, Germany) and collected serially in three dishes. Each dish
ontained a complete set of serial sections that were processed for
mmunofluorescence staining with one dish selected at random.
he sections in the dish were rinsed in 0.01 M phosphate-buffered
aline (PBS, pH 7.3) three times (10 min  each), blocked with 2%
oat serum in 0.01 M PBS that contained 0.3% Triton X-100 for 1 h
t 22–25 ◦C, and then used for immunofluorescence staining. The
ections were incubated overnight at 4 ◦C with the primary anti-
ody, mouse anti-GFAP (1:5000; Chemicon, Temecula, CA, USA).
he sections were washed three times in 0.01 M PBS (10 min  each)
nd then incubated for 4 h at 22–25 ◦C with the secondary antibody,
lexa Fluor 488-conjugated donkey anti-mouse IgG (1:500; Vector,
urlingame, CA, USA). The specificity of the staining was tested on
ections in another dish by omission of the primary specific anti-
odies. No immunoreactive products were found on the sections
data not shown). Confocal images were obtained using a confo-
al laser microscope (FV1000; Olympus, Tokyo, Japan) and digital
mages were captured using the Fluoview 1000 software (Olym-
Please cite this article in press as: Xia L, et al. FGF2 blocks PTSD symp
http://dx.doi.org/10.1016/j.bbr.2013.08.048

us, Tokyo, Japan). Consecutive stacks of images (z-step 0.5 �m)
ere acquired at high magnification (×120) to capture images of

he entire astrocyte. The three-dimensional GFAP graphs were then
nalyzed using Imaris 6.5.0 (Bitplane AG, Zurich, Switzerland).
 PRESS
search xxx (2013) xxx– xxx 3

2.8. Double immunofluorescence western blotting

All animals were sacrificed and the hippocampi rapidly removed
and frozen on dry ice. The hippocampus was dissected and the
selected region was homogenized with a hand-held pestle in
sodium dodecyl sulfate sample buffer (10 mL/mg tissue), which
contained a cocktail of proteinase and phosphatase inhibitors.
The electrophoresis samples were heated at 100 ◦C for 5 min  and
loaded onto 10% sodium dodecyl sulfate–polyacrylamide gels with
standard Laemmli solutions (Bio-Rad Laboratories, Hercules, CA,
USA). The proteins were electroblotted onto polyvinylidene difluo-
ride membranes (Immobilon-P; Millipore, Billerica, MA,  USA). The
membranes were placed in a blocking solution, which contained
Tris-buffered saline with 0.02% Tween and 5% non-fat dry milk,
for 1 h, and incubated overnight under gentle agitation with the
primary antibodies, mouse anti-GFAP (1:5000; Chemicon), rabbit
anti-NeuN (1:5000; Chemicon) and mouse anti-�-actin (1:5000;
Sigma). Bound primary antibodies were detected with the anti-
mouse Alexa 488-conjugated secondary antibody and anti-rabbit
Alexa 594-conjugated secondary antibody (1:500; AmerControl
Pharmacia Biotech Inc., Piscataway, NJ, USA). After 2 h, the bands
were detected using the Bio-Rad system. Between each step, the
immunoblots were rinsed with Tris-buffered saline containing
0.02% Tween.

2.9. Experimental procedures

All rats were divided into two groups (Fig. 1), each of which
was used in a separate experiment. Experiment a (Fig. 1a) evalu- 

ated the effects of ip FGF2 application on conditioned fear response
and GFAP expression. SPS procedures were performed 2 h before
behavioral tests on SPS days 7 and 14. FGF2 was  injected from SPS
8 to 10 once per day 30 min before the conditioned fear response
test. Rats in experiment b (Fig. 1b) were sacrificed on SPS day 14
for immunohistochemistry or western blotting. Experiment b was
designed to assess ip FGF2 application (0.5%, 20 mg/kg) on anxi-
ety behavior and astrocytic activation in the SPS animal model. The
open field (OF) and EPM times were recorded seven days after SPS
procedures. FGF2 was administered 30 min before the behavioral
test on SPS day 7 from 8 to 9 am.  Then, from SPS day 7 to 10, drugs
were administered once per day and behavioral tests were per-
formed on SPS day 14. Rats in both experiments were sacrificed on
SPS day 14 for immunohistochemistry or western blotting.

2.10. Quantification and statistical analysis

The densities of protein blots were analyzed using the Labworks
software (Ultra-Violet Products, Cambridge, UK). The densities of
GFAP and �-actin immunoreactive bands were quantified with
background subtraction. A square of identical size was drawn
around each band to measure the density and the background
intensity near the band was subtracted. As �-actin levels did not
change significantly after inflammation and SPS [35], we used �-
actin levels as a loading control, and GFAP levels were normalized
against �-actin levels and expressed as a fold change compared to
the control.

All data are presented as means ± standard error of mean
(SEM) and collected by researchers blinded to the surgery and
reagents used. ANOVA followed by the least-significant-difference
test was used to evaluate western blot results. Repeated measures
toms via an astrocyte-based mechanism. Behav Brain Res (2013),

ANOVA (with Bonferroni confidence interval adjustment) was  con-
ducted for behavioral data, which were confirmed to be normally
distributed by one-sample Kolmogorov–Smirnov test (data not
shown); p < 0.05 was considered to indicate statistical significance.

293

294

295

296

dx.doi.org/10.1016/j.bbr.2013.08.048


ARTICLE IN PRESSG Model

BBR 8474 1–10

4 L. Xia et al. / Behavioural Brain Research xxx (2013) xxx– xxx

 the d

A
v

3

3

f
T
h
t
a
i
t
i
c
g
s
t

F
r
l
g

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327
Fig. 1. Experimental procedures: time window displaying

ll statistical analyses were performed using the SPSS software,
ersion 16.0 (SPSS Inc., Chicago, IL, USA).

. Results

.1. IP FGF2 alleviated the conditioned fear response

SPS rats exhibit enhanced freezing in response to contextual
ear conditioning, and impaired extinction of fear memory [36,37].
o assess the effect of ip FGF2 on the maintenance of SPS-induced
yperarousal behavior, we applied FGF2 from SPS day 7 to 10, when
he hyperarousal was stable according to our previous study [38],
nd we observed the effect of SPS and SPS + FGF2 at days 7, 10 and 14
n the subject groups (one group for all time points). Compared to
he SPS groups, FGF2 administration decreased the freezing time
n the SPS + FGF2 group on SPS day 10 in the CS + CS in a neutral
Please cite this article in press as: Xia L, et al. FGF2 blocks PTSD symp
http://dx.doi.org/10.1016/j.bbr.2013.08.048

ontext (CSn) test (p < 0.01). This decreasing effect in the SPS + FGF2
roup was maintained until SPS day 14 (Fig. 2A and B). These results
uggested that IP FGF2 alleviated the conditioned fear response in
he SPS rats.

ig. 2. Systemic administration of FGF2 ameliorated the enhanced fear response in the c
esponse to shock chamber; CSn: test for sensitized fear response to neutral tone in a ne
evels  between the SPS and control, and SPS + FGF2 groups. Data are presented as means ±
roup.  Each group consisted of six animals.
ays after single prolonged stress (SPS) or drug application.

On SPS day 7 of experiment a, the freezing time of the SPS group
was 63.2 ± 4.8 s, which was significantly higher than the control
group (15.0 ± 2.3 s) (p < 0.001). On SPS days 10 and 14, the freezing
times of the SPS group were 81.8 ± 6.9 s (SPS day 7) and 72.1 ± 4.7 s
(SPS day 14) (Fig. 2A). Therefore, SPS increased the freezing time
from SPS day 7 to 14, which is consistent with previous reports
[38,39].

3.2. Effects of systemic administration of FGF2 on anxiety
behavior

To examine the effects of FGF2 administration on anxiety behav-
ior in the SPS model, animals were subjected to the OF and EPM
tests. Records of the distance in the central area and the time spent
in the central area within 15 min  in the OF showed that SPS rats
display abnormal hyperactivity, compared with control rats. This
toms via an astrocyte-based mechanism. Behav Brain Res (2013),

is consistent with a previous report that SPS rats spent less time
in the central area and covered less distance in the central area
in the OF test [40]. Thus, as expected, the rats in the SPS + FGF2
group spent more time in the central area than the SPS day 14 group

onditioned fear extinction and sensitized fear tests. CS+: test for conditioned fear
utral context. On days 10 and 14, there were significant differences in the freezing

 SEM. ***p < 0.001 compared to the control group. ###p < 0.001 compared to the SPS
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Fig. 3. Systemic administration of FGF2 produced anxiolytic-like behavior in a rodent model of PTSD. Comparison of distance in the central area (A), time in the central area
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PM  of SPS (n = 8), control (n = 10) or SPS + FGF2 (n = 8) rats. **Indicates statisticall
ignificant difference (p < 0.05) compared to the SPS day 14 group.

p < 0.01). Furthermore, the total distance in the central area in the
PS + FGF2 group was significantly greater than that in the SPS day
4 group (Fig. 3A and B, p < 0.05), indicating that the FGF2 rats dis-
layed less anxiety behavior than the SPS day 14 rats. The total
istance traveled in the OF and mean speed were not significantly
ifferent among the four groups. These results further confirmed
hat SPS can cause a high level of anxiety behavior and that systemic
dministration of FGF2 can alleviate that symptom.

The time spent on the open arms and the frequency of entry
nto the open arms was significantly reduced in the SPS day 7 rats
ompared to the control group. After FGF2 injection, the time spent
n the open arms and the frequency of entry onto the open arms
ecame normal compared to the control group in the SPS day 14
roup (p < 0.01) (Fig. 4A and B). The time spent on the open arms and
he frequency of entry onto the open arms in the SPS + FGF2 group
as significantly elevated after FGF2 administration compared to

he SPS group, indicating that systemic FGF2 application alleviated
he anxiety response. As expected, the percentage of time in the
losed arms and the percentage of entries onto the closed arms did
ot differ among the four groups (Fig. 4C and D).

.3. SPS-induced significant GFAP inhibition

SPS induced marked GFAP inhibition in the hippocampus and
nterior cingulate cortex (ACC), as indicated by GFAP down-
egulation in the SPS day 7 group compared with the control
roup in hippocampus and ACC (Figs. 5 and 6). Immunohistochem-
stry indicated that inhibited GFAP presented atrophied cell bodies
Please cite this article in press as: Xia L, et al. FGF2 blocks PTSD symp
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nd thinned processes with decreased GFAP immunoreactivity
Figs. 5 and 6). We  observed significant GFAP down-regulation on
PS day 1, peaked on SPS day 7, then remained at high levels 14 days
fter SPS. Using double-immunofluorescence western blotting, we
d SPS + FGF2 rats. Data are plotted as means ± SEM. Quantified performance in the
ificant difference (p < 0.01) compared to the control group. #Indicates statistically

performed quantitative studies to confirm the above results. In the
experiment, GFAP expression was 2.6-fold decreased (p < 0.01) in
the SPS day 7 group and 3.2-fold decreased in the SPS day 14 group
compared to the control group (Fig. 7B).

3.4. Effects of ip FGF2 on SPS-induced GFAP inhibition

To assess the effect of systemic administration of FGF2 on the
initiation of GFAP activation, we injected FGF2 daily from SPS day
7 to 10 and investigated GFAP expression on SPS day 14 when
GFAP activation was  assumed to be at a peak level. No signifi-
cant difference in GFAP immunodensity was observed between
the SPS + FGF2 and control groups. In addition, the morphology of
GFAP expression in the SPS + FGF2 (FGF2) group differed signifi-
cantly after systemic FGF2 administration compared to the SPS day
14 group (Figs. 5 and 6). In accordance with the immunohistochem-
ical results, after administration of a high dose of FGF2 on SPS day 7
for three days, the expression of GFAP was  reversed at SPS day 14.
Western blotting showed that GFAP expression in SPS + FGF2 rats
was not different to that in the control group (Fig. 7B), but differed
significantly between FGF2 treatment and SPS day 14 rats.

4. Discussion

Clinical studies have shown that GFAP expression is reduced in
patients with major depression [41], and emerging studies have
demonstrated that astrocytes may  be an important underlying
antidepressive mechanism [42]. In addition, a reduction in the
toms via an astrocyte-based mechanism. Behav Brain Res (2013),

density of GFAP immunoreactive astrocytes was observed in the
amygdala of subjects with major depressive disorders compared to
controls [43]. However, to our knowledge, our study is the first to
show that the astrocyte-specific biomarker GFAP is reduced in the
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Fig. 4. Effects of systemic administration of FGF2 on SPS rats in the EPM test. Comparison of the percentage of open arm entries (OA entries %) (A), percentage of time spent
on  the open arms (OA time %) (B), time on closed arms (C) and entries onto closed arms (D) in the EPM test. Data are plotted as means ± S.E.M. Quantified performance in the
E lly sig
s

S
F
S
t

d
i
M
d
e
[
t
p
r
d
t
b
v
O
a
l
i

a
F
u
b
a
o
h

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445
PM  test of SPS (n = 8), control (n = 10) or SPS + FGF2 (n = 8) rats. **Indicates statistica
ignificant difference (p < 0.01) compared to the SPS day 14 group.

PS, a well-recognized animal model of PTSD [44–46], and systemic
GF2 application up-regulated astrocyte activation and alleviated
PS-induced anxiety behavior in rats, as indicated by the OF/EPM
est.

The SPS paradigm is considered a model of PTSD, and the con-
itioned fear response is a main symptom of PTSD in rats, which

s characterized by a high freezing time in the chamber [38,47,48].
oreover, FGF2 enhanced extinction and reduced renewal of con-

itioned fear [49], and has been shown to both facilitate long-term
xtinction of fear and reduce stress-precipitated relapse in rats
2,3]. We  found that three days of FGF2 administration decreased
he freezing time in the conditioned fear response test in the SPS
aradigm, as well as anxiety behaviors in the EPM, consistent with
eports of increased anxiety in mice with a FGF2 mutation that
ecreases secretion. The IP FGF2 administration did not influence
he total distance and mean speed in OF tests, and decreased anxiety
ehavior in the EPM tests, consistent with previous reports of intra-
entricular FGF2 administration. However, the above-mentioned
F and EPM behavioral test results showed that FGF2 can allevi-
te the anxiety level. Moreover, there was no effect on activity in
ocomotor chambers, providing further evidence that FGF2 admin-
stration does not influence general activity levels.

Although hippocampal FGF2 is a central integrator of the genetic
nd environmental factors that modify anxiety [50], how the ip
GF2 injection affects the astrocytes in the hippocampus remains
nknown. There are reports that peripheral FGF2 can cross the
Please cite this article in press as: Xia L, et al. FGF2 blocks PTSD symp
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lood–brain barrier, although this remains controversial [51–55],
nd additional studies are required to determine if the effects
bserved in this study are direct or indirect. The findings presented
ere also raise the possibility that the therapeutic effects of FGF2
nificant difference (p < 0.01) compared to the control group. ##Indicates statistically

could be mediated, in part, by the increased action of astrocytes;
FGF2 reportedly can regulate GFAP expression [51]. Moreover, a
previous study has demonstrated that animals selectively bred for
high anxiety/low novelty seeking, and who  express lower FGF2
mRNA levels in the hippocampus, can reverse their highly anxious
phenotype by consistent administration of FGF2 [18]. The majority
of evidence in animal models suggests that FGF2 plays an important
role in mediating anxiety behaviors.

PTSD patients may  have atrophy in the hippocampus [56,57].
Because astrocytes are the largest population of cells in the hip-
pocampus, it is plausible that changes in hippocampal astrocytes
are reflected in the PTSD animal model. While previous stud-
ies suggested the involvement of astrocytes in mood disorders
[43,58], emerging studies have suggested a critical role for astro-
cytes in the efficacy of antidepressant drugs [59,60]. Moreover,
astrocytes express receptors for various neurotransmitters, which
enable them to respond to neural signals and thus be activated
[28,61]. Activated astrocytes produce numerous mediators, such as
pro-inflammatory cytokines and growth factors that enhance neu-
ronal activity [62,63]. Reportedly, astrocytes participate not only in
the induction but also the maintenance of fear memory [64]. Col-
lectively, research suggests that the action of astrocytes may  be an
important target in PTSD.

Our results revealed atrophied cell bodies and thinned processes
with decreased GFAP immunoreactivity in the SPS, suggesting
that the number of astrocytes may  be related to the incidence
toms via an astrocyte-based mechanism. Behav Brain Res (2013),

of PTSD. Antidepressant treatment can stimulate adult neuroge-
nesis in the hippocampal dentate gyrus and that this specific
effect may  contribute to their therapeutic efficacy [65]. Addition-
ally, FGF2 is widely accepted as an endogenous antidepressant
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Fig. 5. Effects of SPS and intraperitoneal administration of FGF2 on GFAP expression in the rat hippocampus and ACC. Immunohistochemistry results showed that SPS
inhibited the astrocytic action in the CA1, DG and ACC. However, in the FGF2 treatment groups, intraperitoneal FGF2 application from SPS day 7 to 10 activated GFAP
immunodensities to the normal level in the hippocampus and ACC. Scale bars = 100 �m.

Fig. 6. The effects of FGF2 on GFAP expression in hippocampus induced by SPS. Three-dimensional reconstruction of the complete morphology of GFAP by Imaris 7.5.0 is
shown; GFAP is stained red. Scale bars = 10 �m.

dx.doi.org/10.1016/j.bbr.2013.08.048
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Fig. 7. Effects of intraperitoneal administration of FGF2 on GFAP and NeuN expression in the hippocampus of SPS rats. (A) Schematic overview of the region detected by
western blotting. SPS induced a marked astrocytic inhibition indicated by GFAP down-regulation in the hippocampus, but NeuN expression was not altered in any group. (B)
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PS-induced astrocytic inhibition was confirmed by the lower expression of GFAP in
 group; S7: SPS day 7 group; S14: SPS day 14 group. **Indicates statistically signifi
ignificant difference (p < 0.001) compared to the SPS day 14 group.

nd anxiolytic molecule [66,67]. Chronic antidepressant treatment
ncreased levels of FGF2 and FGF-binding protein in hippocampal
eurons [25], but whether FGF2 can be used as an anti-PTSD drug
nd affect astrocyte action remains unknown. Moreover, many the-
ries of the abnormal functioning of glia cells contributing to the
athophysiology of major psychiatric disorders exist [68,69], and
ntidepressant therapies regulating the expression of GFAP and
ther astroglia-specific proteins [27,70]. We  showed that treat-
ent with FGF2 increases the activation of astrocytes and alleviates

he symptoms of PTSD behavior. However, the molecular signaling
athway underlying the effect of FGF2 on astrocytes needs further
tudy.

Our data indicate that ip administration of FGF2 decreased the
reezing time and anxiety behavior, suggesting that FGF2 applica-
ion may  be a novel therapeutic for PTSD, and that SPS-induced
strocytic inhibition may  be reversed by FGF2. To our knowledge,
his is the first report that astrocytes may  be the cellular tar-
ets underlying the mechanisms of PTSD. Our study suggests that
strocyte-related mechanisms are important in the incidence and
reatment of PTSD.
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